

AI FOR CALORIMETRY/HACKATHON

William Phelps for Team Oxpecker Reborn

Christopher Newport University/Jefferson Lab

What is a Hackathon?

- It can mean many things but, in this context, it is a competition and a learning experience with relevant problems usually generated w/toy models
- Specifically, we will talk about the Al hackathon that took place on July 17th, after the Al Town Hall
 - But you will see a few photos of the hackathon in 2020!
- Typically, there are teams with ~4-5 people
 - Not everyone has to be experienced
- Held over the course of one day with NP based problems/datasets

Hackathons

- Foster community engagement
- Great learning experience
- And most of all, fun!

Oxpecker Reborn Team Roster

- Gagik Gavalian (JLab)
- Tyler Viducic (ODU)
- Andru Quiroga (CNU)
- Torri Jeske (JLab)
- William Phelps (CNU/JLab)

Hackathon Logistics

- 6 Teams ~50 participants
- Website with challenge info and datasets
- Email address to automatically judge submissions!
- Run by the EPSCI and Data Science groups at Jefferson Lab

Thomas Britton Diana MacSpadden Kishan Rajput Chris Tennent

Problem 1

Team Name	Problem Score
Oxpecker Reborn	8.163788238695005
The Nervous Networks	66.86754251577614
Proton	79.52365968464751
Team Turtle	1918.1965562584846
winners	7956.632784857568
The Golden Griffin	40378.38170495783

Problem 2

Team Name	Problem Score A
The Nervous Networks	61.7931339272663
Oxpecker Reborn	68.03510353504575
Team Turtle	435.6676160483719
The Golden Griffin	2935.1811899895774
winners	3123.4748319773944

Team Name	Problem Score
Oxpecker Reborn	97
The Nervous Networks	209
Proton	381.043233808211
Team Turtle	641
winners	736

Problem 3

Team Name	Overall Score
Oxpecker Reborn	235.82656552869
The Nervous Networks	172.99484296064
winners	88.545993151835
Proton	87.168277431949
Team Turtle	80.852772127346
The Golden Griffin	27.83775220045

Overall

Problem 4

Team Name	Problem Score A
Oxpecker Reborn	39818.34017962084
Proton	85387.24586274063
The Nervous Networks	90239.95624025587
Team Turtle	110588.26762290485
winners	111563.48776312581

Problem 5

Team Name	Problem Score A
Oxpecker Reborn	104519.26073971845
winners	186241.24325047343
The Nervous Networks	217902.8833570769

Live scoreboard

Problem sets

- 30x30 simulated calorimeter
- 5 problems of increasing difficulty
- Started out with events with single hits and no noise
- Advanced problems contained multiple hits with noise
- You are given training data and labels in csy format

Note:These problems/solutions may not be ideal! We had a finite amount of time

Tools of the Trade

- Python 3.8 Anaconda
 - Keras/TensorFlow NN Libraries
 - Pandas/Numpy Data Handling
 - Matplotlib Visualization
- Local Machines, cloud resources such as google Colab, or Jlab Scientific Computing resources
 - 4 Titan RTX cards per node
 - Soon there will be nodes with 16 Nvidia T4 cards available

```
test = pd.read_csv("TRAIN/TRAIN.csv")
labels = pd.read_csv("TRAIN/TRAIN_labels.csv")
activation = 'relu'

model = Sequential()
model.add(Dense(units=1000, activation=activation, input_shape=(3600, )))
model.add(Dense(units=1000, activation=activation))
model.add(Dense(units=1000, activation=activation))
model.add(Dense(units=2))
model.compile(optimizer=adam(lr=.001), loss='mean_squared_error', metrics=['accuracy'])
model.fit(test, labels[labels.columns[1:]], epochs=300, batch_size=256, validation_split=0.2)
```


Problem I – Single Hit

- Read in 30x30 pixel hits from CSV files, provide calorimeter hit position (x, y) and amplitude of the hit.
- Model Architecture: 3 layers of 2000 neurons, relu activation function

Problem 2 – Denoising

Problem 3 – Count clusters

- Multiple showers per event from a Poisson distribution
- No upper limit on # showers
- Goal: Return the # of showers given a calorimeter hit (shown on the right)

Solved using a Convolutional Neural Network

Problem 4, 5 – Multiple Hits, w/Noise

- Read in 30x30 pixel images from CSV files, provide calorimeter hit position(s) (x,y) and amplitude of the hit.
- Model Architecture: 5 layers of 2000 neurons, relu activation function

Summary

- Hackathons are a great experience!
 - If you are paying attention and you thought these problems are interesting then you should sign up
- They make a great educational experience because typically we are all familiar with how to wrangle data but not necessarily the AI tools
- When someone else does the wrangling and presents a clear problem you can focus on the ML techniques
- Is the EIC community interested in having an AI Hackathon?